

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

Updates are descending from most recent.

0.2.2

all by @ntrupin {LineScript}

Miscellaneous Changes

	Created a beta of a TextMate syntax highlighter

	Refactored the syntax highlighter for CoffeeScript, Python, Ruby, XML, and YAML

0.2.1

all by @ntrupin {LineScript}

Documentation Changes

	Began working on new documentation

0.2.0

Compiler Changes

	-breaking change- Completely revamped the compiler, making the contribution, development, and usage process much smoother and simpler (@ntrupin {LineScript})

	-breaking change- Changed the method of splitting the commands (@ntrupin {LineScript})

	-breaking change- Added the ability for almost any element to be nested, alone, self-closing, styled, or text-containing (@ntrupin {LineScript})

	Added style tag (@ntrupin {LineScript})

	Added ul tag (thanks, @nmacarthur)

	Added ol tag (thanks, @nmacarthur)

	Added li tag (thanks, @nmacarthur)

	Added headscript tag (@ntrupin {LineScript})

	Added section tag (@ntrupin {LineScript})

	Added nav tag (@ntrupin {LineScript})

	Added main tag (@ntrupin {LineScript})

	Added header tag (@ntrupin {LineScript})

	Added hr tag (@ntrupin {LineScript})

	Added the ability to write text outside of tags (@ntrupin {LineScript})

	Added the ability to have empty elements (@ntrupin {LineScript})

	Added comment tag (@ntrupin {LineScript})

	Simplified end sequence (@ntrupin {LineScript})

Bug Fixes

	Fixed a bug where empty tags would print “undefined” on the screen (@ntrupin {LineScript})

0.1.2

Compiler Changes

	-breaking change- Rerouted the compiler’s parsing process and greatly reduced pageload speed (thanks, @Yamboy1)

	Made the compiler code prettier (@ntrupin {LineScript})

0.1.1

all by @ntrupin {LineScript}

Bug Fixes

	Fixed a bug where the Meta Tag couldn’t show viewport data

	Removed Output identifiers. Programmers don’t like global variables used that way

0.1.0

Compiler Changes

	-breaking change- Slashed over 100 lines of code from the compiler to make it more concise (blueprint: @Yamboy1 ; execution: @ntrupin {LineScript})

	-breaking change- Converted the compiler from string pasting to template literals (blueprint: @Yamboy1 ; execution: @ntrupin {LineScript})

0.0.4

thanks, @Mofiqul

Compiler Changes

	Added abbr Tag

	Added Button Tag

	Added Input Tag

	Added a Tag

	Added Textarea Tag

Documentation Changes

	Added abbr Tag to documentation

	Added Button Tag to documentation

	Added Input Tag to documentation

	Added a tag to documentation

	Added Textarea Tag to Documentation

0.0.3

Compiler Changes

	Added Nested and Positive capability to Span Tag (@ntrupin {LineScript})

	Added img Tag (thanks, @Yamboy1)

Bug Fixes

	Fixed fatal error in Paragraph Tag (@ntrupin {LineScript})

Documentation Changes

	Added Span Tag to documentation (@ntrupin {LineScript})

	Added img Tag to documentation (thanks, @Yamboy1)

0.0.2

thanks, @Yamboy1

Compiler Changes

	Changed compiler and gate file paths from definitive to relative

Documentation Changes

	Fixed documentation

0.0.1

Bug Fixes

	Bug fixes (@ntrupin {LineScript})

Compiler Changes

	Added Span Tag (thanks, @jmona789)

0.0.0

all by @ntrupin {LineScript}

	Created Compiler

	Created gate

	Created base

	Created README

	Created DOCS

	Created ugly_yellow

	Created CHANGELOG

	Created templates

Contributing

Thanks to GitHub, it is very easy to contribute to open source. To make your contribution, just follow the guide below.

Familiarize

Before you contribute, it is important that you Familiarize yourself with code syntax, structure, and style. The code you write must maintain uniform with already established code to make sure it functions properly and looks best for future contributors.

The code for the compiler is in the /src/ directory. Since that is where you will be coding, this is where you should familiarize.

The entire script uses cases and switched, to provide smooth flowing through different layers of the parsing process. Please, do not use if/else statements. They take up a lot more space and often do not work as planned.

Fork

This is where you start contributing. To fork the repository, click the button in the top right corner of the main page of the repository. This will create a clone of LineScript under your name, with you as the owner.

A fork is a branch of a repository where you can edit whatever you want without it affecting the overall project. While this may be true, you are discouraged from doing so, as it will render you unable to submit a pull request to push your changes.

Instead, take this opportunity to test bits of code to see what they do. When you feel you are ready to begin writing, you may move on.

Write

This is where your contribution takes place. You will be writing in the compiler, so you should open up that file. You now have the opportunity to add and edit the code, and that is exactly what you are going to do.

Add

If you are adding to the code, navigate to the bottom of the document. Make sure you are still inside the parse() function. This is where you will make your entry. Copy and paste code from another section of the document and add it to the bottom. Once the formatting is set up how you feel is correct, you may edit the values in your copied function to encompass a new tag. For example, if you copied the “1” tag and are creating a “3” tag, you would change

This

 case "1":
 switch(v[1]) {
 case undefined:
 case null:
 output = "<h1>" + c[1] + "</h1>"
 return output;
 break;
 default:
 output = "<h1 " + v[1] + ">" + c[1] + "</h1>"
 return output;
 break;
 }

to This

 case "3":
 switch(v[1]) {
 case undefined:
 case null:
 output = "<h3>" + c[1] + "</h3>"
 return output;
 break;
 default:
 output = "<h3 " + v[1] + ">" + c[1] + "</h3>"
 return output;
 break;
 }

Or, you may also write your own function from scratch, and include your own special functionality. It all depends on what you think you can do! Just make sure to comment and commit descriptively, so it is crystal-clear what you did.

Edit

If you find a bug in a function, or just want to make it more practical or add on, you can edit existing functions! This can be done by simply editing values in a function of adding more cases to it. The more cases in a function, the more powerful it is. For example, if you wanted to add styles to a “1” tag, you would change

This

 case "1":
 switch(v[1]) {
 default:
 output = "<h1 " + v[1] + ">" + c[1] + "</h1>"
 return output;
 break;
 }

to This

 case "1":
 switch(v[1]) {
 case undefined:
 case null:
 output = "<h1>" + c[1] + "</h1>"
 return output;
 break;
 default:
 output = "<h1 " + v[1] + ">" + c[1] + "</h1>"
 return output;
 break;
 }

Pull Request

After you have completed your changes, it is time to create a pull request. In your fork, you can click the green “Pull Request” button. From here, it asks you to fill out a template, which you must do for the admins. After you have completed the steps, submit your request. This sends your fork to the admins for approval. If they approve it, it will automatically merge with master.

You’re Done!

Congratulations! You finished making your first open source contribution to LineScript! We’d love if you starred the repository (to attract more contributors) or contributed again, to make it even better!

Docs

This is the official LineScript documentation.

See a bug in the docs? Submit a Pull Request [https://github.com/ntrupin/LineScript/pulls].

Getting Started

Getting started with LineScript is incredibly easy! All it requires is three files, two of which can be linked to using an external URL. Follow the guide below to learn how to start using LineScript, and feel free to browse the rest of the documentation to learn about the syntax.

	Set up your HTML file.

The HTML file is what is called on by your browser when the webpage is requested, and is the page that is dynamically updated to include the parsed LineScript file. This is the one file that you must have downloaded to your computer or hosted on wherever you are hosting your webpage. You can get it here [https://github.com/ntrupin/linescript/blob/master/src/base.html].

Once you have the file, there are a few things you must do:

	Replace <body onload="build('MY_FILE')" id="line"> with the path/name of your LineScript file. For example, if the name of your LineScript file is index.osls, you would change the HTML to <body onload="build('index')" id="line">

	Replace <script src="compiler.js"></script> and <script src="gate.js"></script> with the path/name of the compiler and gate files. The files can be hosted with the rest of your page to, or linked to using an external URL (explained below). In some cases, you may not even have to change these tags!

	Retrieve the Compiler and Gate files.

The compiler and the gate are the two files that make LineScript work.

	compiler.js is the file that is LineScript. It contains the switches and other code that takes your osls file and converts it to a valid HTML document. The majority of the updates we make to the language are done to this file, because all of the commands, arguments, and well… everything is calculated in this script. You can get it here [https://ntrupin.github.io/linescript/src/compiler.js].

	gate.js is the file that takes your osls file and splits it into bite-sized bits that can be read by the compiler. When you call the build argument in the HTML document, it is calling the function for this file, which fetches your LineScript file and makes small tweaks so that it complies to standards. You can get it here [https://ntrupin.github.io/linescript/src/gate.js].

You don’t have to do anything to these files - they work as-is.

	Create your LineScript (osls) file.

osls stands for “Open-Source LineScript”, and is the file extension for LineScript files. In order to use LineScript, you have to… use LineScript. This can be done by creating a file called “MY_FILE.osls”, which can be, for example, “index.osls”. Create the file in any text editor, and there, you can write LineScript! Here’s a little sample code for you:

title -> My First LineScript Page
h1 -> Hello, World!
p -> This is my first LineScript page! It is very, very simple, and is just an example.

	Navigate to your HTML file.

Once you open this file, LineScript takes care of the rest! Congratulations, you just created your first LineScript page!

Syntax Reference

Text-Class Elements

These are LineScript elements that are primarily text-based, and all operate using roughly the same syntax.

Headings

h1 (also applicable for h2, h3, h4, h5, and h6)
-> Full Usage: h1 -> ARGUMENTS -> TEXT
--> Example: h1 -> style="color:blue" -> Hello, world!
--> Result: <h1 style="color:blue">Hello, world!</h1>
-> Text-Only Usage: h1 -> TEXT
--> Example h1 -> Hello, world!
--> Result <h1>Hello, world!</h1>
-> Nestable Usage: h1 -> ARGUMENTS -> noend
--> Example: h1 -> style="background-color:blue" -> noend
--> Result: <h1 style="background-color:blue">

Paragraph

p
-> Full Usage: p -> ARGUMENTS -> TEXT
--> Example: p -> style="color:blue" -> Hello, world!
--> Result: <p style="color:blue">Hello, world!</p>
-> Text-Only Usage: p -> TEXT
--> Example p -> Hello, world!
--> Result <p>Hello, world!</p>
-> Nestable Usage: p -> ARGUMENTS -> noend
--> Example: p -> style="background-color:blue" -> noend
--> Result: <p style="background-color:blue">

Hyperlink

a
-> Full Usage: a -> ARGUMENTS -> TEXT
--> Example: a -> style="color:blue" -> Hello, world!
--> Result: Hello, world!
-> Text-Only Usage: a -> TEXT
--> Example a -> Hello, world!
--> Result <a>Hello, world!
-> Nestable Usage: a -> ARGUMENTS -> noend
--> Example: a -> style="background-color:blue" -> noend
--> Result:

Abbreviation

abbr
-> Full Usage: abbr -> ARGUMENTS -> TEXT
--> Example: abbr -> title="Open-Source LineScript" -> OSLS
--> Result: <abbr title="Open-Source LineScript">OSLS</abbr>
-> Text-Only Usage: abbr -> TEXT
--> Example abbr -> OSLS
--> Result <abbr>OSLS</abbr>
-> Nestable Usage: abbr -> ARGUMENTS -> noend
--> Example: abbr -> title="Open-Source LineScript" -> noend
--> Result: <abbr title="Open-Source LineScript">

Button

button
-> Full Usage: button -> ARGUMENTS -> TEXT
--> Example: button -> style="color:blue" -> Hello, world!
--> Result: <button style="color:blue">Hello, world!</button>
-> Text-Only Usage: button -> TEXT
--> Example button -> Hello, world!
--> Result <button>Hello, world!</button>
-> Nestable Usage: button -> ARGUMENTS -> noend
--> Example: button -> style="background-color:blue" -> noend
--> Result: <button style="background-color:blue">

List Element

li
-> Full Usage: li -> ARGUMENTS -> TEXT
--> Example: li -> style="color:blue" -> Hello, world!
--> Result: <li style="color:blue">Hello, world!
-> Text-Only Usage: li -> TEXT
--> Example li -> Hello, world!
--> Result Hello, world!
-> Nestable Usage: li -> ARGUMENTS -> noend
--> Example: li -> style="background-color:blue" -> noend
--> Result: <li style="background-color:blue">

Container-Class Elements

These are LineScript elements that are primarily used for holding other elements, and all operate using roughly the same syntax.

Division/Section

div
-> Full Usage: div -> ARGUMENTS
--> Example: div -> style="color:blue"
--> Result: <div style="color:blue">
-> Self-CLosing Usage: div -> ARGUMENTS -> end
--> Example div -> style="color:blue" -> end
--> Result <div style="color:blue"></div>
-> Text-Included Usage: div -> ARGUMENTS -> TEXT
--> Example: div -> style="color:blue" -> Hello, World!
--> Result: <div style="color:blue">Hello, World!

Table

table
-> Full Usage: table -> ARGUMENTS
--> Example: table -> style="color:blue"
--> Result: <table style="color:blue">
-> Self-CLosing Usage: table -> ARGUMENTS -> end
--> Example table -> style="color:blue" -> end
--> Result <table style="color:blue"></table>
-> Text-Included Usage: table -> ARGUMENTS -> TEXT
--> Example: table -> style="color:blue" -> Hello, World!
--> Result: <table style="color:blue">Hello, World!

Table Header

th
-> Full Usage: th -> ARGUMENTS
--> Example: th -> style="color:blue"
--> Result: <th style="color:blue">
-> Self-CLosing Usage: th -> ARGUMENTS -> end
--> Example th -> style="color:blue" -> end
--> Result <th style="color:blue"></th>
-> Text-Included Usage: th -> ARGUMENTS -> TEXT
--> Example: th -> style="color:blue" -> Hello, World!
--> Result: <th style="color:blue">Hello, World!

Table Row

tr
-> Full Usage: tr -> ARGUMENTS
--> Example: tr -> style="color:blue"
--> Result: <tr style="color:blue">
-> Self-CLosing Usage: tr -> ARGUMENTS -> end
--> Example tr -> style="color:blue" -> end
--> Result <tr style="color:blue"></tr>
-> Text-Included Usage: tr -> ARGUMENTS -> TEXT
--> Example: tr -> style="color:blue" -> Hello, World!
--> Result: <tr style="color:blue">Hello, World!

Table Data

td
-> Full Usage: td -> ARGUMENTS
--> Example: td -> style="color:blue"
--> Result: <td style="color:blue">
-> Self-CLosing Usage: td -> ARGUMENTS -> end
--> Example td -> style="color:blue" -> end
--> Result <td style="color:blue"></td>
-> Text-Included Usage: td -> ARGUMENTS -> TEXT
--> Example: td -> style="color:blue" -> Hello, World!
--> Result: <td style="color:blue">Hello, World!

Form

form
-> Full Usage: form -> ARGUMENTS
--> Example: form -> style="color:blue"
--> Result: <form style="color:blue">
-> Self-CLosing Usage: form -> ARGUMENTS -> end
--> Example form -> style="color:blue" -> end
--> Result <form style="color:blue"></form>
-> Text-Included Usage: form -> ARGUMENTS -> TEXT
--> Example: form -> style="color:blue" -> Hello, World!
--> Result: <form style="color:blue">Hello, World!

The rest of the documentation will be added shortly

LineScript [image:] [image:] [image:]

The open source markup language that complies into HTML at runtime, providing beautiful, easy syntax to create webpages.

Like it? Leave us a star, it will help attract more visitors and contributors!

Our Mission

Primarily, our mission at LineScript is to help beginners and experts alike make their first contribution, and any that follow, to open source, and to find their place in the vast community. To do so, we created clear-cut contribution guides and examples, created rich documentation, have formulated a welcoming community, and are always around ourselves to lend a helping hand.

Secondarily, our mission at LineScript is to provide a way to develop interfaces for the web that is cleaner and more user-friendly than HTML. That means we removed clumped code, ugly opening/closing tag combinations, and trying to squeeze attributes into tags. The LineScript compiler only allows for one tag to be on a line, and it must follow a strict grammar. This leads to more uniform code that is nicer to the developer.

The Problem

Modern web development (HTML/CSS/JS), though wonderfully functional and powerful, could be quite ugly to look at, and hard to navigate and edit, once there was a few dozen lines of code. These pages did not look like good writing (bad for your personal image, and your portfolio) and could be quite hard to continue work on.

Our Goals

	Provide a vocabulary similar to HTML

	Create a strict grammar to enforce clean code

	Maintain a simple, powerful syntax to provide maximum functionality with a minimal learning curve

What is LineScript?

LineScript is a compiled programming language that is written in statements broken up by line to represent the page structure. It is compiled into a valid HTML document at runtime using the LineCompiler, and can be used to create real webpages.

The structure of the document is inspired by a combination of Elm [https://elm-lang.org] and Haskell [https://haskell.org], while the tag names are close alterations of HTML. This leads to extremely clean code that is familiar to anyone who has developed for the web, making LineScript the perfect beginner and expert language.

Why LineScript?

We believe that you should use LineScript because it provides a crisp, clean alternative to boring old HTML. What could be done in HTML with this:

<!doctype html>
<html>
<head>
 <title>Example Domain</title>
 <meta charset="utf-8" />
 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <style type="text/css">
 body {
 background-color: #f0f0f2;
 margin: 0;
 padding: 0;
 font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;

 }
 div {
 width: 600px;
 margin: 5em auto;
 padding: 50px;
 background-color: #fff;
 border-radius: 1em;
 }
 a:link, a:visited {
 color: #38488f;
 text-decoration: none;
 }
 @media (max-width: 700px) {
 body {
 background-color: #fff;
 }
 div {
 width: auto;
 margin: 0 auto;
 border-radius: 0;
 padding: 1em;
 }
 }
 </style>
</head>
<body>
<div>
 <h1>Example Domain</h1>
 <p>This domain is established to be used for illustrative examples in documents. You may use this
 domain in examples without prior coordination or asking for permission.</p>
 <p>More information...</p>
</div>
</body>
</html>

Can easily be written in LineScript like this:

charset -> utf-8
meta -> viewport -> width=device-width, initial-scale=1
link -> stylesheet -> index.css
title -> Hello, World!
div
 h1 -> Example Domain
 p -> This domain is established to be used for illustrative examples in documents. You may use this domain in examples without prior coordination or asking for permission.
 a -> href='http://www.iana.org/domains/example' -> More information...
end -> div

Linked to this stylesheet:

body {
 background-color: #f0f0f2;
 margin: 0;
 padding: 0;
 font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
}
div {
 width: 600px;
 margin: 5em auto;
 padding: 50px;
 background-color: #fff;
 border-radius: 1em;
}
a:link, a:visited {
 color: #38488f;
 text-decoration: none;
}
@media (max-width: 700px) {
 body {
 background-color: #fff;
 }
 div {
 width: auto;
 margin: 0 auto;
 border-radius: 0;
 padding: 1em;
 }
}

Using LineScript’s Runtime Compiler, the LineScript example displays the same exact output as the HTML example… and the developer wrote half as much code! Also, the LineScript part looks so much neater, don’t you think? Writing LineScript is much nicer than HTML, and it doesn’t require as much effort to write. So, why LineScript? Because it is shorter, easier, and cleaner.

CSS/JS Capabilities

For styling documents in LineScript, you can link to external style sheets (such as Bootstrap [https://getbootstrap.com] or Skeleton [https://getskeleton.com]), use inline CSS, or use your own custom style sheet. All function of CSS3 is allowed, and extensions such as WebKit are able to be used.

JavaScript can be embedded in LineScript to interact with storage, the parsed HTML, servers, and more. LineScript also includes the ability to use JavaScript libraries such as jQuery [https://jquery.com].

However, LineScript does not support embedded style sheets or scripts. All CSS or JavaScript must be written inline or in a separate document.

Usage

See DOCS.md.

Contributing

See CONTRIBUTING.md

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at ntrupin@ntrupin.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Description

Please include a summary of the change and which issue is fixed. Please also include relevant motivation and context. List any dependencies that are required for this change.

Fixes # (issue)

Type of change

Please delete options that are not relevant.

	[] Bug fix (non-breaking change which fixes an issue)

	[] New feature (non-breaking change which adds functionality)

	[] Breaking change (fix or feature that would cause existing functionality to not work as expected)

	[] This change requires a documentation update

Checklist:

	[] My code follows the style guidelines of this project

	[] I have performed a self-review of my own code

	[] I have commented my code, particularly in hard-to-understand areas

	[] I have made corresponding changes to the documentation

	[] My changes generate no new warnings

name: Bug report
about: Create a report to help us improve

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to ‘…’

	Click on ‘….’

	Scroll down to ‘….’

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

Smartphone (please complete the following information):

	Device: [e.g. iPhone6]

	OS: [e.g. iOS8.1]

	Browser [e.g. stock browser, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here.

name: Feature request
about: Suggest an idea for this project

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

